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ABSTRACT
In this paper, we study multimodal named entity recognition in
social media posts. Existing works mainly focus on using a cross-
modal attention mechanism to combine text representation with
image representation. However, they still suffer from two weak-
nesses: (1) the current methods are based on a strong assumption
that each text and its accompanying image are matched, and the im-
age can be used to help identify named entities in the text. However,
this assumption is not always true in real scenarios, and the strong
assumption may reduce the recognition effect of the MNER model;
(2) the current methods fail to construct a consistent representa-
tion to bridge the semantic gap between two modalities, which
prevents the model from establishing a good connection between
the text and image. To address these issues, we propose a general
matching and alignment framework (MAF ) for multimodal named
entity recognition in social media posts. Specifically, to solve the
first issue, we propose a novel cross-modal matching (CM) module
to calculate the similarity score between text and image, and use
the score to determine the proportion of visual information that
should be retained. To solve the second issue, we propose a novel
cross-modal alignment (CA) module to make the representations
of the two modalities more consistent. We conduct extensive ex-
periments, ablation studies, and case studies to demonstrate the
effectiveness and efficiency of our method.The source code of this
paper can be found in https://github.com/xubodhu/MAF.
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1 INTRODUCTION
Multimodal named entity recognition (MNER) has become an im-
portant research direction of named entity recognition (NER), which
can improve text-based NER by using images as additional input
[20]. It assumes that image information can help identify ambiguous
named entities when text information is insufficient. For example,
given the text ‘Handsome Rob after a fish dinner’, it is diffi-
cult for us to infer the type of named entity Rob. It may describe a
person or an animal. With the help of its accompanying image (as
shown in Figure 1), we can easily determine that its type is MISC.

Text: Handsome [Rob MISC] after a fish dinner.

Figure 1: An Example of Multimodal Named Entity Recog-
nition. The Named Entity and Its Type are Highlighted in
Brackets.
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In this paper, we study MNER in social media posts. Compared
with text-based NER methods, existing works have achieved good
performance [2, 12, 14, 19, 22]. They mainly focus on using a cross-
modal attention mechanism to combine text representation with
image representation. [14] first proposes an LSTM-CNN architec-
ture that combines text with image information via a general modal-
ity attention module. [12] proposes an attention-based model to
extract image features from the regions in the image most related
to the text and uses a gate to combine text features and image fea-
tures. [22] proposes an adaptive co-attention network to control
the combination of text representation and image representation
dynamically. [19] proposes a multimodal transformer architecture,
which captures the inter-modal interactions with a multimodal
interaction module. In addition, [2] introduces image attributes and
image knowledge to help capture the deep features of the image
and improve the performance of the MNER model.

Despite their success, existing MNER methods still suffer from
two weaknesses:

• Firstly, the current methods are based on a strong assump-
tion that each text and its accompanying image are matched,
and the image can be used to help identify named entities in
the text. Therefore, when identifying named entities in text,
both text information and image information must be consid-
ered. However, not all text is matched to their accompanying
images, and considering the mismatched image information
may mislead the model. For example, in Figure 2, there is
no relationship between the object (a person) in the image
and the named entity (Siri) in the text. If this mismatched
image is considered, the MNER methods would regard Siri
as the person in the image and make an incorrect prediction.
However, thanks to the pre-trained model (i.e., BERT [4]),
the text-based NER methods can easily infer that the type of
Siri isMISC. This kind of mismatch is common, as reported
in [18], there are about 33.8% of tweets that the textual con-
tent is not represented in the image and the image does not
add additional content.

Text: Ask [Siri MISC] what 0 divided by 0 is and watch her put
you in your place.

Figure 2: An Example of Mismatched Text-Image Pair.

• Secondly, current methods fail to construct a consistent rep-
resentation to bridge the semantic gap between the two
modalities. Since the representations of text and images come
from different encoders, the representations between them
are inconsistent. Therefore, it is difficult to directly use these
inconsistent representations to capture the correspondence

between words in the text and regions in the image. For
example, in Figure 1, the word Rob in the text corresponds
to the region where the object Cat is in the image. Ideally,
the word Rob should have a higher similarity with the re-
gion related to object Cat in the image, and should have a
lower similarity with other regions in the image. However,
due to the inconsistent representations between the text and
the image, when calculating the similarity score, the simi-
larity between the Rob in the text and the Cat in the image
may be lower than the similarity of other regions. Thus, the
inconsistent representations will prevent the model from
establishing a good connection between the text and image.

To address these issues, we propose a general matching and
alignment framework (MAF ). Specifically, to solve the first issue,
we propose a novel cross-modal matching (CM) module to cal-
culate the similarity score between text and image, and use the
score to determine the proportion of image information that should
be retained. To solve the second issue, we propose a cross-modal
alignment (CA) module to make the representations of the two
modalities more consistent.

Our main contributions can be summarized as follows:
• Firstly, we propose a general matching and alignment frame-
work for the MNER task, which can reduce the impact of
mismatched text-image pairs and make the representations
between the two modalities more consistent.

• Secondly, the two modules we proposed (CA and CM) are
based on self-supervised learning, without requiring any
additional data annotations, and can be easily extended to
other multimodal tasks.

• Finally, experiments conducted on two widely used MNER
datasets show that our method achieves the new state-of-the-
art performance. We also conduct ablation studies and case
studies to show that both the CA module and CM module
play an essential role in our framework.

2 OVERVIEW
In this section, we first formulate our problem, and then introduce
the framework of our system: MAF.

2.1 Problem Formulation
Given a text 𝑆 and its associated image 𝐼 as input, the task ofMNER
is to extract a set of named entities from 𝑆 , and classify each ex-
tracted named entity into one of the pre-defined types. As most
existing work on MNER, we formulate the task as a sequence la-
beling problem. Let 𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑛) denote a sequence of input
words, and 𝒚 = (𝑦1, 𝑦2, ..., 𝑦𝑛) be the corresponding label sequence,
where 𝑦𝑖 ∈ Y and Y is the pre-defined label set with the BIO2
tagging schema [16].

2.2 Framework
Our general matching and alignment framework (MAF ) is shown
in Figure 3, which contains four main components: (1) cross-modal
alignment module; (2) cross-modal interaction module; (3) cross-
modal matching module; (4) cross-modal fusion module.

The overall process is as follows: we first obtain the representa-
tion of each word and the entire text through BERT [4], and obtain
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Figure 3: Overall Architecture of MAF.

the regional and global representation of the image through the
ResNet [7]. Then, the representation of the entire text and global
representation of the image will be fed to the cross-modal alignment
module, and the representation of each word and the regional rep-
resentation of the image will be fed to the cross-modal interaction
module. The cross-modal alignment module is used to make the
representations from the text encoder and the image encoder more
consistent, and the cross-modal interaction module is used to get
a text-aware image representation. Then we use the cross-modal
matching module to determine the proportion of image informa-
tion that should be retained. Finally, we use the cross-modal fusion
module to fuse the representations of the two modalities, and feed
them into a conditional random field layer to get the final prediction
result. These modules are trained simultaneously.

3 METHOD
3.1 Input Representations
3.1.1 Text Encoder. We use BERT [4] as the text encoder, which
obtains a deep bidirectional representation by pre-training on a
large of corpus. Following [4], each input sentence needs to add
a [CLS] token at the beginning and a [SEP] token at the end. We
denote the text input as 𝑺

′

= (𝑠0, 𝑠1, ..., 𝑠𝑛, 𝑠𝑛+1), where 𝑠0 is the
[CLS] token and 𝑠𝑛+1 is the [SEP] token, 𝑠1 to 𝑠𝑛 represent the
token sequence of the input sentence. The length of the input text
is fixed to 𝑛, so the text longer than 𝑛 will be truncated to 𝑛, and
the text shorter than 𝑛 will be filled with [PAD] token to 𝑛. We
feed the input 𝑺

′

to BERT to obtain the representation of token
sequence 𝑻 = (𝑡0, 𝑡1, ..., 𝑡𝑛, 𝑡𝑛+1), where 𝑡𝑖 ∈ R𝑑 corresponding to
the representation of 𝑠𝑖 . To get the representation of the entire text
𝑻𝒔 , we feed 𝑡0 to a fully connected layer with an activation function

of Tanh, which is used to obtain its final hidden state as a sentence
representation [4].

3.1.2 Image Encoder. We use ResNet [7] as the image encoder,
which is one of the state-of-the-art convolutional neural networks.
According to [12], we first resize the image to 224 × 224 pixels,
then the image is fed to ResNet to obtain the regional and global
representation of the image. The regional representation of the
image 𝑱 = ( 𝑗1, 𝑗2, ..., 𝑗48, 𝑗49) is from the convolutional layer of
the last layer of ResNet, and the dimension is 2048 × 7 × 7, where
7 × 7 = 49 is the number of regions in the image and 2048 is the
dimension of the representation of each region in the image, and
the size of each region is 32 × 32 pixels. We use an average pooling
layer with a size of 7 × 7 to 𝑱 to obtain the global representation
of the image 𝑽𝒈 ∈ R2048 to represent the entire image. At last,
we project 𝑱 to the same dimensions as the text representation:
𝑽 = 𝑾𝑇

𝒋 𝑱 , where𝑾𝑇
𝒋 ∈ R2048×𝑑 is the weight matrix. Therefore,

𝑽 = (𝑣1, 𝑣2, ..., 𝑣48, 𝑣49), where 𝑣𝑖 ∈ R𝑑 represents 𝑖-th region of the
image.

3.2 Cross-Modal Alignment Module
The previous model cannot align the representations between the
two modalities, and the cross-modal alignment (CA) module is used
to make the representations from the text encoder and the image
encoder more consistent. Inspired by recent advances in contrastive
learning [3, 5, 21], we propose a novel contrastive learning method
for cross-modal consistent representation. The inputs of the CA
module are the text representation 𝑻𝒔 and the global representation
of the image 𝑽𝒈 . The entire process can be described concisely in
three basic steps:
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Firstly, we generate the positive and negative examples from a
batch of (𝑻𝒔 , 𝑽𝒈) input pairs with size 𝑁 . 𝑻𝒂𝒔 is the text representa-
tion of the 𝑎-th pair in the batch, and 𝑽𝒃𝒈 is the image representation
of the 𝑏-th pair in the batch. We assume that the positive exam-
ples are the text and image representations from the same input
pairs {(𝑻𝒂𝒔 , 𝑽𝒃𝒈 )𝑎=𝑏 }, and negative examples are the representations
from different input pairs {(𝑻𝒂𝒔 , 𝑽𝒃𝒈 )𝑎≠𝑏 }. Therefore, we can obtain
1 positive example and 𝑁 − 1 negative examples for each input pair
in the batch. According to [3], the effect of contrastive learning
is mainly affected by the number of negative examples, which is
positively correlated with the number of negative examples. Thus
the impact of a small number of mismatched pairs that may appear
in the positive examples is negligible.

Secondly, for each example (𝑻𝒂𝒔 , 𝑽𝒃𝒈 ), we adopt two different
MLPs with one hidden layer applying on the 𝑻𝒂𝒔 , 𝑽𝒃𝒈 to get the
projected text representation 𝑻𝒂𝒄 ∈ R𝑑 and image representation
𝑽𝒃𝒄 ∈ R𝑑 , respectively. We find that this MLP projection can help
the encoders (in our setting, BERT and ResNet) to learn a better
representation, as is also found in [3, 11].

Thirdly, we try to maximize the similarity of the positive ex-
amples and minimize the similarity of the negative examples by
minimizing two contrastive loss functions, namely the image-to-
text contrastive loss function and the text-to-image contrastive loss
function [23]. The image-to-text contrastive loss function for the
𝑖-th positive projected pair in the batch is defined as follows:

L (𝑉𝑐→𝑇𝑐 )
𝑖

= −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑽 𝒊
𝒄 , 𝑻

𝒊
𝒄 )/𝜏)∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑽 𝒊
𝒄 , 𝑻

𝒋
𝒄 )/𝜏)

, (1)

where 𝑠𝑖𝑚(𝑽 𝒊
𝒄 , 𝑻

𝒊
𝒄 ) = (𝑽 𝒊

𝒄 )
𝑇 𝑻 𝒊

𝒄/∥𝑽 𝒊
𝒄 ∥∥𝑻 𝒊

𝒄 ∥ represents the cosine sim-
ilarity between 𝑽 𝒊

𝒄 and 𝑻 𝒊
𝒄 , 𝜏 is the temperature parameter, which is a

hyperparameter.The text-to-image contrastive loss for 𝑖-th positive
projected pair is defined as follows:

L𝑖
(𝑇𝑐→𝑉𝑐 ) = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑻 𝒊

𝒄 , 𝑽
𝒊
𝒄 )/𝜏)∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑻 𝒊
𝒄 , 𝑽

𝒋
𝒄 )/𝜏)

(2)

At last, we sum up the two losses for all positive projected pairs
in the batch:

L𝑐𝑎 =
1
𝑁

𝑁∑
𝑖=1

(𝜆𝑐L (𝑽𝒄→𝑻𝒄 )
𝑖

+ (1 − 𝜆𝑐 )L (𝑻𝒄→𝑽𝒄 )
𝑖

), (3)

where 𝜆𝑐 ∈ [0, 1] is a hyperparameter. By minimizing the loss
function, the representations from the text encoder and the image
encoder will be more consistent.

3.3 Cross-Modal Interaction Module
To better infer the relationship between the image and the text,
the cross-modal interaction (CI ) module is used to obtain a text-
aware image representation. Similar to [17, 19], it consists of two
sub-layers. The first is a multi-head attention layer, and the second
is a fully connected feed-forward network. We employ a residual
connection around each of the two sub-layers, followed by layer
normalization. The details are as follows.

An attention function can be described as mapping a query and a
set of key-value pairs to an output [17]. As shown in Figure 3, we use
the token sequence 𝑻 = (𝑡0, 𝑡1, ..., 𝑡𝑛, 𝑡𝑛+1) ∈ R𝑑×(𝑛+2) as queries,

and use the regional image representation 𝑽 = (𝑣1, 𝑣2, ..., 𝑣48, 𝑣49) ∈
R𝑑×49 as key-value pairs to obtain the text-aware image represen-
tation as follows:

𝜶 𝒊 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
[𝑾𝒒𝒊𝑻 ]𝑇 [𝑾𝒌𝒊𝑽 ]√

𝑑/𝑚
) (4)

𝑪𝑽𝒊 = 𝜶 𝒊 [𝑾𝒗𝒊𝑽 ]𝑇 (5)

𝑪𝑽 =𝑾
′

[𝑪𝑽1; 𝑪𝑽2; ...; 𝑪𝑽𝒎]𝑇 , (6)
where {𝑾𝒒𝒊 ,𝑾𝒌𝒊 ,𝑾𝒗𝒊 } ∈ R𝑑/𝑚×𝑑 are the weight matrices for each
query, key and value,𝑾

′ ∈ R𝑑×𝑑 is the weight matrix form-head at-
tention. 𝜶 𝒊 ∈ R(𝑛+2)×49 denotes the alignment score between each
token (includes [CLS], [PAD] and [SEP]) and each image region.
𝑪𝑽𝒊 ∈ R(𝑛+2)×𝑑/𝑚 denotes the text-aware image representation
from the 𝑖-th cross-modal attention head, 𝑪𝑽 ∈ R𝑑×(𝑛+2) is the
text-aware image representations from m attention heads.

After that, we obtain the final text-aware image representation
𝑪 = (𝑐0, 𝑐1, ..., 𝑐𝑛, 𝑐𝑛+1) (𝑐𝑖 ∈ R𝑑 ) as follows:

𝑽
′

= 𝐿𝑁 (𝑻 + 𝑪𝑽 ) (7)

𝑪 = 𝐿𝑁 (𝑽
′

+ 𝐹𝐹𝑁 (𝑽
′

)), (8)
where LN is the layer normalization [1], FFN is the feed-forward
network.

3.4 Cross-Modal Matching Module
The cross-modal matching (CM) module is used to determine the
proportion of image information that should be retained. It receives
the token sequence representation 𝑻 and the text-aware image
representation 𝑪 as input, and outputs the relatedness between
them. Due to the lack of explicit knowledge about the relatedness
between text and images, we propose a self-supervised learning
method to train the module. The entire process is described as
follows:

Firstly, we generate the training examples from a batch of (𝑻 , 𝑪)
input pairs with size 𝑁 . Let 𝑻𝒂 be the token sequence representa-
tion of the 𝑎-th pair in the batch, and 𝑪𝒃 be the text-aware image
representation of the 𝑏-th pair in the batch. We assume that the
positive examples are the text image representations from the same
input pairs {(𝑻𝒂, 𝑪𝒃 )𝑎=𝑏 }, and negative examples are the represen-
tations from different input pairs {(𝑻𝒂, 𝑪𝒃 )𝑎≠𝑏 }. This assumption
is similar to the CA module (See Section 3.2), but the input and
output of the module and the process of generating positive and
negative examples are different. Specifically, we randomly select
2𝑘 (0 < k < N/2) input pairs from the batch and swap the image
representations of the first half in the input pairs with the second
half as the negative examples. Moreover, the remaining 𝑁 − 2𝑘
input pairs in the batch are positive examples. For example, there
are three input pairs in the batch, which are (𝑻 1, 𝑪1), (𝑻 2, 𝑪2) and
(𝑻 3, 𝑪3). Among them, (𝑻 1, 𝑪1) and (𝑻 2, 𝑪2) are selected to swap
their image representations. Finally, we obtain two negative ex-
amples (𝑻 1, 𝑪2) and (𝑻 2, 𝑪1) and one positive example (𝑻 3, 𝑪3).
There may also be mismatched examples in the positive examples,
so we set the 𝑘 value to be relatively small to reduce the negative
impact caused by the mismatched examples while ensuring the
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balance of the samples. We also try to crop the image to generate
positive and negative samples, but the final effect is not improved.

Secondly, we train the CM module by using the generated train-
ing examples. Let 𝑫𝒎 = (𝐷𝑚1, 𝐷𝑚2, ..., 𝐷𝑚𝑁 ) be the batch of train-
ing examples, 𝐷𝑚𝑖 is the i-th example.𝑇 (𝐷𝑚𝑖 ) and𝐶 (𝐷𝑚𝑖 ) are the
text representation and image representation in 𝐷𝑚𝑖 , respectively.
Specifically, for each example 𝐷𝑚𝑖 , we first concatenate its text rep-
resentation 𝑇 (𝐷𝑚𝑖 ) and image representation 𝐶 (𝐷𝑚𝑖 ), and then
flatten it into a fully connected layer. The prediction process is as
follows:

𝐹𝑖 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛( [𝑇 (𝐷𝑚𝑖 );𝐶 (𝐷𝑚𝑖 )]) (9)

ˆ𝑦𝑚𝑖 = 𝜎 (𝑾𝑇
𝒇 𝐹𝑖 ), (10)

where 𝑾𝒇 is the weight parameter, 𝜎 is the sigmoid activation
function. To train the module, we use binary cross-entropy [6] as
our loss function L𝑐𝑚 , which is defined as follows:

L𝑐𝑚 = − 1
𝑁

𝑁∑
𝑗=1

𝑦𝑚 𝑗 · 𝑙𝑜𝑔( ˆ𝑦𝑚 𝑗 ) + (1 − 𝑦𝑚 𝑗 ) · 𝑙𝑜𝑔(1 − ˆ𝑦𝑚 𝑗 ) (11)

Finally, we obtain the retained image representation as follows:

𝑴 = ˆ𝑦𝑚 ⊙ 𝑪, (12)

where 𝑪 (See Eq 8) is the text-aware image representation of the
input, 𝑦𝑚 is the value of the real label of the positive and negative
examples corresponding to 1 and 0 respectively, ˆ𝑦𝑚 is the corre-
sponding predicted retained probability, and ⊙ is the element-wise
product function. 𝑴 ∈ R𝑑×(𝑛+2) is the retained image representa-
tion.

3.5 Cross-Modal Fusion Module
Cross-modal fusion (CF ) module is used to obtain the final cross-
modal representation for each token. The entire process can be
described as follows.

Firstly, we use a gate mechanism, similar to [12, 19], to dynami-
cally control the combination of text and image representations at
the token level. Given the text representation 𝑻 (see Section 3.1.1)
and the retained image representation 𝑴 , the token-level gate 𝒈 is
calculated as follows:

𝒈 = 𝜎 (𝑾𝑇
𝒈𝒕 𝑻 +𝑾𝑇

𝒈𝒎𝑴), (13)

where 𝑾𝒈𝒕 and 𝑾𝒈𝒎 ∈ R𝑑×𝑑 are weighted matrices, 𝜎 is the
element-wise sigmoid function. 𝒈 ∈ R𝑑×(𝑛+2) is the token-level
gate. Then we get the final token-level image representation 𝑹 as
follows:

𝑹 = 𝒈 ⊙ 𝑴, (14)

where ⊙ is the element-wise product.
To integrate the word and the image representations at token-

level, we concatenate 𝑻 and 𝑹 to obtain the final hidden represen-
tations 𝑯 = (ℎ0, ℎ1, ..., ℎ𝑛+1), where ℎ𝑖 ∈ R2𝑑 .

3.6 CRF Decoder
After image information has been incorporated into all tokens, we
use the conditional random field (CRF ) decoder to perform the
MNER task, we feed final hidden representations 𝑯 (see Section 3.5)

into a standard CRF layer, which predicts the probability of a se-
quence of predictions 𝒚 through the original text 𝑆 (see Section 2.1)
and its associated image 𝐼 (see Section 2.1) as follows:

𝑃 (𝒚 |𝑆, 𝐼 ) =
𝑒𝑥𝑝 (∑𝑛

𝑖=1 𝐸ℎ𝑖 ,𝑦𝑖 +
∑𝑛
𝑖=0𝑇𝑦𝑖 ,𝑦𝑖+1 )

𝑍 (𝑯 ) (15)

𝑍 (𝑯 ) =
∑
𝒚

𝑒𝑥𝑝 (
𝑛∑
𝑖=1

𝐸ℎ𝑖 ,𝑦𝑖 +
𝑛∑
𝑖=0

𝑇𝑦𝑖 ,𝑦𝑖+1 ), (16)

where 𝐸ℎ𝑖 ,𝑦𝑖 is the emission score of label 𝑦𝑖 for the 𝑖-th token,
𝑇𝑦𝑖 ,𝑦𝑖+1 is the transition score from label 𝑦𝑖 to label 𝑦𝑖+1, and 𝑍 (𝑯 )
is a normalization [9] by summation of emission and transmission
scores over all possible𝒚 sequences. To train the module, we use the
log-likelihood loss as our loss function, which is defined as follows:

L𝑚𝑛𝑒𝑟 = − 1
|𝐷𝑚𝑛𝑒𝑟 |

𝑁∑
𝑗=1

(
𝑙𝑜𝑔𝑃 (𝒚 𝑗 |𝑆 𝑗 , 𝐼 𝑗 )

)
, (17)

where 𝐷𝑚𝑛𝑒𝑟 = {𝑆 𝑗 , 𝐼 𝑗 ,𝒚 𝑗 }𝑁
𝑗=1 is the batch of training examples.

3.7 Model Training
In summary, our general matching and alignment framework con-
sists of one supervised learning task (MNER) and two auxiliary
self-supervised learning tasks (CA and CM). We train these three
tasks jointly, and the final loss function is defined as follows:

L = 𝛼L𝑐𝑎 + 𝛽L𝑐𝑚 + (1 − 𝛼 − 𝛽)L𝑚𝑛𝑒𝑟 , (18)

where L𝑐𝑎 is the loss function of CA (see Section 3.2), L𝑐𝑚 is the
loss function used by the CM (see Section 3.4). L𝑚𝑛𝑒𝑟 is the loss
function used by the MNER task (see Section 3.6). 𝛼 and 𝛽 are the
hyperparameters.

4 EXPERIMENT
4.1 Dataset
We conduct experiments on twowidely usedMNER datasets, namely
Twitter2015 [22] and Twitter2017 [12], which are collected from
Twitter. Each tweet contains a text-image pair, where the textual
content may not be in the image, and the text may contain zero or
more named entities. There are four types of entities: Person (PER),
Organization (ORG), Location (LOC) and others (MISC). We use the
pre-processed datasets provided by [19] 1. Table 1 shows the num-
ber of entities for each type and the counts of multimodal tweets
in the training, development, and test sets of the two datasets.

4.2 Metrics
We use the F1 score (F1) of each type and overall precision (P),
recall (R) and F1 score (F1) to evaluate the performance of the
MNER models, which are widely used in many recent works [2, 12,
14, 19, 22]. In this experiment, for a fair comparison, we use the
code provided by [19] for evaluation 1.

4.3 Parameter Settings
We conduct all the experiments on NVIDIA GTX 2080 Ti GPUs
with PyTorch 1.7.1. The parameter settings of our framework are
as follows:
1https://github.com/jefferyYu/UMT
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Table 1: The Statistics Summary of Two MNER Datasets.

TWITTER-2015 TWITTER-2017
Type Train Dev Test Train Dev Test

PER 2,217 552 1,816 2,943 626 621
LOC 2,091 522 1,697 731 173 178
ORG 928 247 839 1,674 375 395
MISC 940 225 726 701 150 157

Total 6,176 1,546 5,078 6,049 1,324 1,351

# Tweets 4,000 1,000 3,257 3,373 723 723

• For the text encoder, we use 𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒 2 in our model, which
contains an encoder with 12 layers (transformer blocks), 12
self-attention heads, and the hidden size of 768. The maxi-
mum length of the input text is 128, and other parameters in
it is initialized with the pre-trained BERT model.

• For the image encoder, we use ResNet152 3 in our model,
which is a pre-trained 152-layer ResNet.

• For the CA module, the size of the MLP hidden layer is 768,
and the activation function is Relu. 𝜏 = 0.102 , 𝜆𝑐 = 0.7.

• For the CI module, the size of multi-head attentions m is 12.
• For the CM module, 𝑘 = 15.
• For the training of the entire framework, the batch size 𝑁
is 64, the number of training epochs is 24, and the learn-
ing rate in the entire network is 5𝑒−5. The text encoder is
fine-tuned, and the image encoder is not fine-tuned. The hy-
perparameters 𝛼 and 𝛽 are 0.2, 0.2, respectively. The above
hyperparameters are obtained through a small grid search
in the development set.

4.4 Baselines
To demonstrate the effect of our general alignment and matching
framework (MAF ), we first consider several representative text-
based NER methods:

• BiLSTM-CRF [8], which is a classic NER model with a bidi-
rectional LSTM layer and a CRF layer.

• CNN-BiLSTM-CRF [13], which is an improvement of BiLSTM-
CRF. The embedding of each word is enhanced with its word
embedding and CNN -based character-level word represen-
tations.

• HBiLSTM-CRF [10], which is a variant of CNN-BiLSTM-CRF
by replacing the CNN layer with an LSTM layer to obtain
the character-level word representations.

• BERT [4], which is a multi-layer bidirectional transformer
encoder, followed by a softmax decoder.

• BERT-CRF, which is a multi-layer bidirectional transformer
encoder, followed by a CRF decoder.

• T-NER [15, 22], which is a tweet-specific NER system. It uses
a set of widely used effective features, such as the dictionary,
contextual and orthographic features.

2https://github.com/google-research/bert
3https://download.pytorch.org/models/resnet152b121ed2d.pth.

Besides, we also consider a comparison with severalMNERmeth-
ods:

• GVATT-HBiLSTM-CRF [12], which uses the HBiLSTM-CRF
as the text encoder, and uses the attention mechanism to
combine image information with text information to obtain
text-aware image representation.

• GVATT-BERT-CRF [19], which is a variant of the GVATT-
HBiLSTM-CRF by replacing the text encoder with BERT.

• AdaCAN-CNN-BiLSTM-CRF [22], which is based on CNN-
BiLSTM-CRF and uses an adaptive co-attention network to
decided whether to attend to the image.

• AdaCAN-BERT-CRF [19], which is a variant of the AdaCAN-
CNN-BiLSTM-CRF by replacing the text encoder with BERT.

• UMT-BERT-CRF [19], which is the state-of-the-art multi-
modal NER model that including a multimodal interaction
module to obtain both image-aware word representations
andword-aware visual representations and an auxiliarymod-
ule to leverage purely text-based entity span detection.

• MT-BERT-CRF [19], which is a variant of UMT-BERT-CRF
without the auxiliary module.

• ATTR-MMKG-MNER [2], which is a multimodal NER model
that introduces both image attributes and image knowledge
to help improve NER task.

• MAF, which is the model we proposed in this paper.

4.5 Effectiveness
We report the metrics of F1 score (F1) for every single type and
overall precision (P), recall (R), and F1 score (F1) on two benchmark
MNER datasets. Specifically, Table 2 shows the performance of 6
text-based models and 8 multimodal models on TWITTER-2015 and
5 text-based models and 7 multimodal models on TWITTER-2017.
The detailed analysis is as follows.

Firstly, we compare all text-based NER methods. From the table,
we find that the BERT -based methods perform best, indicating that
transfer learning helps achieve state-of-the-art results for NER tasks
by tuning pre-trained models instead of starting from scratch. In
addition, we find that the model combining BERT and CRF has
better performance than the model using BERT only, indicating
that CRF can indeed effectively learn the constraints of the labels
in the neighborhood and jointly predict the best chain of labels.

Secondly, we compare theMNERmethods with their correspond-
ing text-based NER competitors, such as GVATT-HBiLSTM-CRF and
HBiLSTM-CRF. From the table, we find that almost all multimodal
models are better than their corresponding text-based competi-
tors, indicating that the image information on social media posts is
indeed helpful for named entity recognition in text.

Finally, we compare our model with all other MNER methods.
From the table, we find that our method achieves state-of-the-art
performance on both datasets, demonstrating the effectiveness of
our model. Especially on the TWITTER-2017 dataset, our model
outperforms the state-of-the-art model (UMT-BERT-CRF ) by 0.94
points in overall F1, which shows that the twomodules we proposed
can help the model better combine text representation and image
representation.
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Table 2: Performance Comparison on Two MNER Dataset. For a fair comparison, we refer to the results of baselines before
BERT-CRF andUMT-BERT-CRF with themarker ♣ from [19], and the result ofATTR-MMKG-MNER andT-NERwith themarker
♠ from [2].

TWITTER-2015 TWITTER-2017
Single Type (F1) Overall Single Type (F1) Overall

Methods PER. LOC. ORG. MISC. P R F1 PER. LOC. ORG. MISC. P R F1

BiLSTM-CRF 76.77 72.56 41.33 26.80 68.14 61.09 64.42 85.12 72.68 72.50 52.56 79.42 73.43 76.31
CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37
HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17 87.91 78.57 76.67 59.32 82.69 78.16 80.37

BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95
BERT-CRF♣ 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44
T-NER♠ 83.64 76.18 50.26 34.56 69.54 68.65 69.09 - - - - - - -

GVATT-HBiLSTM-CRF 82.66 77.21 55.06 35.25 73.96 67.90 70.80 89.34 78.53 79.12 62.21 83.41 80.38 81.87
AdaCAN-CNN-BiLSTM-CRF 81.98 78.95 53.07 34.02 72.75 68.74 70.69 89.63 77.46 79.24 62.77 84.16 80.24 82.15

GVATT-BERT-CRF 84.43 80.87 59.02 38.14 69.15 74.46 71.70 90.94 83.52 81.91 62.75 83.64 84.38 84.01
AdaCAN-BERT-CRF 85.28 80.64 59.39 38.88 69.87 74.59 72.15 90.20 82.97 82.67 64.83 85.13 83.20 84.10

MT-BERT-CRF 85.30 81.21 61.10 37.97 70.48 74.80 72.58 91.47 82.05 81.84 65.80 84.60 84.16 84.42
UMT-BERT-CRF♣ 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31

ATTR-MMKG-MNER♠ 84.28 79.43 58.97 41.47 74.78 71.82 73.27 - - - - - - -
MAF (Ours) 84.67 81.18 63.35 41.82 71.86 75.10 73.42 91.51 85.80 85.10 68.79 86.13 86.38 86.25

Table 3: Comparison of Training and Testing Time (Seconds
for each Epoch) and Number of Parameters (Millions) of
Models on Two MNER Datasets.

TWITTER-2015 TWITTER-2017 Size (M)Methods Training Testing Training Testing

UMT-BERT-CRF 102.035 30.002 85.971 6.281 208.29
MAF 86.822 25.619 73.754 5.450 196.28

4.6 Efficiency
We also compare the runtime and model size between the state-of-
the-art model (UMT-BERT-CRF ) and MAF.

As shown in Table 3, the number of parameters of UMT-BERT-
CRF and MAF is 196.28 million, 208.29 million, respectively. Al-
though our model additionally proposes a cross-modal matching
module and a cross-modal alignment module, because we simplified
the cross-modal interaction module, the overall model size is still
smaller than UMT-BERT-CRF. It can also be seen from the training
and testing time of the model on the two data sets that our model
training time is 14.91% and 14.21% faster than UMT, and the testing
time is 14.61% and 13.23% faster than UMT-BERT-CRF. This proves
the efficiency of our model.

4.7 Ablation Study
To investigate the effectiveness of theCA andCM modules proposed
in our framework, we perform comparisons between the full model
MAF and its ablation methods.

As shown in Table 4, MAF benefits from the CA module and
CM module. Specifically, on the TWITTER-2015 dataset, without the
CA module, w/o CA drops 0.23 F1 scores; without the CM module,
w/o CM drops 0.52 F1 scores; without both the CAmodule and CM
module,w/o CA + CM drops 0.87 F1 scores. On the TWITTER-2017
dataset, without the CA module, w/o CA drops 2.04 F1 scores;

Table 4: Ablation Study of our Matching and Alignment
Framework.We turn off theCAmodule andCM module and
both two modules on our full model respectively, which are
represented as “w/o CA”, “w/o CM” and “w/o CA + CM”.

TWITTER-2015 TWITTER-2017
Methods P R F1 P R F1

MAF 71.41 75.32 73.32 86.13 86.38 86.25

w/o CA 70.89 75.44 73.09 83.75 84.68 84.21
w/o CM 70.96 74.73 72.80 85.40 84.46 84.93

w/o CA + CM 70.32 74.71 72.45 82.90 84.30 83.60

without the CM module, w/o CM drops 1.32 F1 scores; without
both the CA module and CM module, w/o CA + CM drops 2.65
F1 scores. These results indicate that both the CA module and CM
module play an essential role in our framework. In addition, the
effect of the ablation experiment on TWITTER-2017 is more obvious
than that on TWITTER-2015. We think it is because TWITTER-2015
has more noises than TWITTER-2017, so after removing the CA
and CM modules, the performance of the model does not decrease
significantly.

4.8 Case Study
In order to verify the effectiveness of our CA module and CM
module intuitively, we select four representative cases from the test
set, and compare their prediction results with UMT-BERT-CRF and
our model. Table 5 shows their prediction results. Next, we will
analyze each case in detail.

In the first two cases, the textual content is represented in the
image. For the first case, UMT-BERT-CRF corresponds the word
HURRY to the object jersey in the image instead of corresponding
the word ONE to the jersey. Therefore, UMT-BERT-CRF incorrectly
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Table 5: Four Representative Cases from the Test Set of TwoMNER Datasets and Their Prediction Results on the State-Of-The-
Art Multimodal Method (UMT-BERT-CRF ) and Our Method (MAF, MAF w/o CA and MAF w/o CM).

Methods Importance of the CA Module Importance of the CM Module

[HURRY O] GET ONE BEFORE
THEYRE SENT TO AFRICA

The beautiful camel is
called [Camille MISC]

[Aquamarine MISC]
(2006)

#[Malevich PER] opens at Tate
Modern on 16 July

UMT-BERT-CRF
MAF

MAF w/o CA
MAF w/o CM

[HURRY PER] ×
[HURRY O] ✓
[HURRY PER] ×
[HURRY O] ✓

[Camille MISC] ✓
[Camille MISC] ✓
[Camille PER] ×
[Camille MISC] ✓

[Aquamarine ORG] ×
[Aquamarine MISC] ✓
[Aquamarine MISC] ✓
[Aquamarine ORG] ×

[Malevich PER] ✓
[Malevich PER] ✓
[Malevich PER] ✓
[Malevich LOC] ×

predicts HURRY as PER, which indicates that UMT-BERT-CRF still has
a gap between the text representation and the image representation.
However, the two models that retain the CAmodule (MAF andMAF
w/o CM) can predict HURRY correctly, and the model (MAF w/o CA)
without the CA module incorrectly predicts HURRY. For the second
case, UMT-BERT-CRF,MAF andMAF w/o CM can all correspond the
word Camillewith object camel in the image, so they can correctly
predict Camille as MISC. However, after removing the CA module,
MAF w/o CA corresponds Camille with the person in the image,
so MAF w/o CA incorrectly predicts Camille as PER. This shows
that the CA module can help the model to align the text and image
representations.

In the last two cases, there is no textual content in the image,
and the image information will have a negative impact on the
prediction result. For the third case, UMT-BERT-CRF is affected
by the object house in the image, and Aquamarine is predicted to
be ORG, which shows that the UMT-BERT-CRF cannot filter the
noise brought by the image well. Even if the image has a strong
interference on the prediction result, our two models (MAF and
MAF w/o CA) that retain the CM module can still determine that
Aquamarine is a movie based on the year information (2006) in the
text, and then predict it asMISC. The model (MAF w/o CM) without
the CM module predicts Aquamarine as ORG like UMT-BERT-CRF.
For the fourth example, UMT-BERT-CRF,MAF, andMAF w/o CA can
filter out the noise of the image very well, so Malevich is correctly
predicted as PER. However, after removing the CM module, the
MAF w/o CM is affected by the geometric shapes in the image,
which incorrectly predicts Malevich as LOC. This shows that the
CM module can reduce the impact of mismatched text-image pairs.

5 RELATEDWORK
In this section, we review and summarize the works that are most
relevant to our research.

Starting with [14], multimodal named entity recognition (MNER)
has become an important research direction in named entity recog-
nition (NER) which significantly extends the conventional text-
based NER by taking images as additional inputs [20].

The critical challenge is how to combine text representation
with image representation. [14] first proposed an LSTM-CNN ar-
chitecture that combines text with image information via a general
modality attention module. [12] propose an attention-based model
to extract image features from the regions in the image most related
to the text and use a gate to combine text features and image fea-
tures. [22] propose an adaptive co-attention network to dynamically
control the combination of text representation and image represen-
tation. [19] propose a multimodal transformer architecture for the
task of MNER, which captures the inter-modal interactions with a
multimodal interaction module. [2] proposed a novel neural net-
work model that introduces image attributes and image knowledge
to help improve model performance for MNER.

However, these methods are all assumed that each text and its
accompanying image are matched, and the image can be used to
help identify named entities. Moreover, they fail to construct a con-
sistent representation to bridge the semantic gap between the two
modalities. Therefore, in this paper, we propose a general match-
ing and alignment framework for MNER task, which can reduce
the impact of mismatched between text and images and make the
representations between the two modalities more consistent.

6 CONCLUSION
In this paper, we propose MAF, a general matching and alignment
framework, which improves state-of-the-art performance on multi-
modal named entity recognition for social media posts. Specifically,
we propose a cross-modal alignment module based on contrastive
learning to make the text representations and image representa-
tions more consistent, and propose a cross-modal matching module
to determine the proportion of image information that should be
retained. We conduct extensive experiments, ablation studies and
case studies to show that the CA module can help the model estab-
lishing a connection between the named entity in the text and the
region where the corresponding object in the image is located, and
reduce the interaction with other regions in the image. The CM
module can help the model filter out most of the image information
that is not related to the text, reducing the impact of mismatched
images on the text.
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